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Dynamical invariants for timeevolution of open quantum 
systems in finite dimensions 
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Zyicb, Switlerland 

Received 9 November I992 

Ahsbaet. Various equivalent representations of dynamical invariants (or constants of 
motion) are derived for N-level systems in mixed states with particular emphasis on so- 
called coherence vector invariants. They appear as certain homogeneous forms in the real 
solutions of the von Neumann equation, with coefficients given by multilinear forms in the 
completely symmetric structure constants of the Lie-algebra of SU(rV). The treatment is 
motivated by the close analogy between Lax pairs for~classical dynamical systems and 
pairs given by density and Hamilton operators. In both cases the underlying mathematical 
structure is essentially determined by the properties of symmetric functions. However. in 
the quantum case more theorems of general validity can be derived due to the peculiar 
properties of density operators. In particular, the maximum number of functionally indepen- 
dent invariants in relation to the spectral properties is obtained, as well as bounds on their 
order of magnitude, the latter from an extrema1 property analysis. From group-theoretical 
methods a complete classification of all possibilities of completely incoherent state dynamics 
is deduced. As a by-product a simple algorithm for the explicit determination of all (N- 1)- 
dimensional irreducible representation matrices of the symmetric group SN and an associated 
construction of hyperpolyhedra is worked out. Finally, the. importance of invariants is 
stressed for the control of numerical accuracy in large-scqe computations in very high 
dimensions which, after taking partial traces, can be used~for the description of irreversible 
processes. In summary, the results will be ofpractical relevance for applications to problems 
of short-time dynamics in molecular laser spectroscopy, quantum optics and magnetic 
resonance. 

1. Introduction 

Time-evolution of physical systems is mostly determined by some differential or integro- 
differential laws whose solution has always posed difficult problems. In general, the full 
global time-evolution may not be known but certain particular aspects like, for instance, 
short-time or long-time behaviour may be accessible by some approximate treatments. 
In view of these difficulties those quantities which are conserved during time-evolution 
have always played a central role since, in many cases, they provide exact answers to 
some selected questions. Particularly in classical Hamiltonian mechanics, the search for 
transformations to action-angle variables or, else, for a complete set of constants of 
motion in involution has a remarkable history with many successful results 11-31, 
Furthermore, even for moregeneral dynamical systems l i e  those obeying, for instance, 
equations of Korteweg-de Vries type, .the pioneering ideas of Lax [4] have led to 
surprising progress with wide applications [5]. The developed methods have, in turn, 
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610 K Lendi 

become extremely fruitful in the theory of Hamiltonian systems and led to such unex- 
pected proofs as, for instance, complete integrability of Toda-lattice problems and many 
others [6-111. The central point is a possible existence of transformations of complicated 
nonlinear equations to a linear Lie-structure of type 

L=[B,  L ]  (1.1) 
where the so-called Lax-pair Land E is given by matrices in some higher dimension N 
and where, in many cases, even the limit AJ- cc may be included. In this formulation 
time-evolution appears then as isospectral deformations and the proof of complete 
integrability is straightforward. 

It is surprising that the above ideas have not been well enough appreciated, and 
applied similarly for quantum dynamics since the von Neumann equation 

p =  -i[H, p] (1.2) 
where p is a density operator and H a  Hamiltonian, has an analogous mathematical 
structure. The trivial difference is just that the general similarity transformations of the 
classical case are replaced by unitary transformations in the quantal case due to the 
self-adjointness of operators and the additional imaginary factor. A few comments 
regarding the applicability of (1.2) are necessaly. In the general description of open 
quantum systems the appearance of irreversibility causes the dynamics to become non- 
unitary. In particular, in the weak or singular-coupling limits or in the more general 
formulation derived from the concept of complete positivity [ 12-15], time-evolution is 
given by a quantum dynamical semigroup whose infinitesimal generator structure is 
exactly known. After imposing the uniqueness condition Tr(H)=O the generator can 
always be written as the sum of a Hamiltonian part as in (1.2) plus a non-Hamiltonian 
unitarity-violating part. More than that, in most physically interesting problems the 
characteristic time-scale set by H for Hamiltonian evolution is appreciably shorter than 
that caused by the second part for dissipation. For instance, in optical problems H 
contains transition times of the order of femtoseconds whereas relaxation frequently 
occurs on a picosecond or slower scale. Moreover, the analogous separation for ESR is 
roughly between nano- and microseconds and for NMR between micro- and less than 
milliseconds, disregarding exceptional cases. Roughly speaking, a time-scale separation 
of about three orders of magnitude or more is almost the rule in the majority of cases. 
This fact, by the way, is the basis of success of the powerful pulse-sequence methods 
in NMR [16, 171. In summary, there is always a first time-interval on which the dynamics 
is unitary to good approximation and (1.2) can be used in this form without additional 
terms. Note also that even for closed systems the initial state may be a mixed state in 
the sense of quantum statistical mechanics 1181 and (1.2) cannot be circumvented by a 
SchrBdinger equation in terms of a wavefunction description. I t  is under all the above 
circumstances that either analytical or numerical methods for the solution of the von 
Neumann equation may be supplemented by fully taking advantage of the existence of 
dynamical invariants, and it is certainly worth developing related details, as will be 
done in the following sections. 

In sections 2, 3 and 4 various representations of the invariants are given which may 
be transformed into each other and which, depending on technical convenience, may 
be used in one or the other explicit form. However, in terms of the real solutions of 
(1.2) in a higher-dimensional space the natural choice is offered by the coherence-vector 
invariants derived in section 4. Since the importance of invariants is emphasized also 
in relation to numerical solutions, it is of interest to have a knowledge of their order 
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of magnitude or, in other words, of their extrema1 properties, which will be considered 
in section 5. Answers to questions about global dynamics like, for instance, possibilities 
ofreaching desired final states starting from selected initial states, can be found success- 
fully for completely incoherent states. Some attempts have been made earlier in this 
direction [19-241 and section 6 gives a complete account by Lie-algebraic and other 
grouptheoretical methods for these cases. Then,.section 7 is devoted to general consid- 
erations on the importance of invariants in numerical problems with a quantitative 
explanation of trends in terms of a low-dimensional model. Finally, the concluding 
section 8 provides some outlook to the use of invariants in large-scale computations 
for irreversible processes. 

2. Polynomial invariants for unitary dynamics 

The timedependent mixed states of an N-level system are given in terms of an ( N x  N ) -  
densitymatrix p ( t )  withTr(p(t))= 1 andTr(pZ(t))< 1. The pure stateswithTr(p'(t))= 
1 can be described by wavefunctions and will not be of relevance in the following 
considerations. Time-evolution is governed by 

(2.1) P(f)=-i[H(f), ~ ( 0 1  

P o ) =  ~tOp(O)U*(t)  (2.2) 

(expc -iHt) H time-independent (2.3) 

~~ 

where H i s  a self-adjoint Hamiltonian. The solution to (2.1) can always be written as 

in terms of a unitary transformation 

where Tis the Dyson time-ordering operator. The diagonal form of p ( 0 )  will be denoted 
by DO with the set of eigenvalues {Aj)?,  O<A;$l (Vi), as obtained through a unitary 
transformation V according to Do= V*p(O) V. This gives, for (2.2) 

(2.5) 

Clearly, p ( t )  and. p ( 0 )  have identical spectrum obtained from the characteristic 
po1ynomi.d 

p ( O =  W t P o W * ( f )  V( f) = U( t )  v w* = w-', 

&(A) =Det[AQN- p ( t ) ]  = ~et[Ab--p(O)l 

&(a) =a?'- 1,P-I +a.N-2-. . . + ( - I ) ~ -  IzN- ]a+ ( - I ) ? ' I ~  

(2.6) 

( 2 . 7 ~ )  

by setting PN=O. The representation in terms of powers is then 

with coefficients given by 

IM0l =Tr[p(Ol = 1 (2.7b) 

1zMt) I  = E tp;itOpdO- I~iktt)I*). (2 .7~)  
N 

i c k  
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I , [p(t)]=:h: sum of leading minors of Ith order (1 G I G N )  

IN[P(~)] = Det[p(t)l. (2.7d) 

In terms of the roots one has 

and a comparison with (2.74 shows that the coefficients I, are so-called elementary 
symmetric functions [25,26] on the spectmm of p 

I / ( & ,  &, . . . 3 AN)= (2.9) 
m l c m l c  ... bnl, 

since an arbitrary permutation of the roots leaves all 1,s invariant. The most important 
consequence is now that due to (2.6) every I l (Al ,  A2, . . . ,,&)=Z~[p(t)] is a dynamical 
invariant .(or constant of motion)’satisfying 

1<I$N. (2.10) 
d 
dt - I d p ( t ) l = O  

The important question as to the maximum number and mutual independence of these 
quantities can be answered by recalling the main theorem on symmetric functions 
[26,27]. It states that the elementary symmetric functions form a complete basis in the 
‘nonlinear’ space of all entirely rational functions which are symmetric in N variables 
and of arbitrary degree. Thenotion of a ‘nonlinear’ spacemeans that any of its elements 
can be expressed as a polynomial in the 1,s in a unique way. Thus. the maximum 
number Nmax of functionally independent invariants is obtained for faithful states p 
(Det(p) fO) with distinct roots, in which case N,,=N. For non-faithful states of rank 
r <N with all non-zero roots still distinct, one finds directly from (2.9) N,,,,,=r. More 
delicate is the case of degeneracies in the spectrum as treated in appendix 1. Here, we 
just summarize the results. The first trivial case concerns the central state 

(2.1 1) 

for which all invariants are just a function of N and I (and of I , ,  but here, I ,  = 1) 

N! 
I/=( ) I !  l $ l < N ,  

N‘ ( N  - I ) !  I! 
(2.12) 

Thus, there is only one free invariant Il and N,,,= I. Arbitrary states with r 9 N  are 
characterized by N,,,<r if all nqn-zero roots have the same multiplicity g with the 
consequence that N,,, = r/g.  This follows from a reduction of the elementary symmetric 
functions of I’ variables to non-elementary but still symmetric functions all of which 
can be expressed as polynomials in elementary ones belonging to a lower-dimensional 
problem in nr fewer distinct variables (m < r) .  As a trivial corollary one finds that Nmax = 
r whenever r is prime. As is clear from the treatment in appendix 1. all the above 
conditions are sufficient for an analysis of the maximum number of functionally 
independent invariants. However, no general proof could be formulated (so far) in 
order to show that the given conditions are also necessary. At the moment, this remains 
an open question although some simple explicit calculations for low N support strong 
evidence for necessity. 
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3. Trace-invariants 

Since the trace of a matrix is a unitary invariant one can generate a set K,, of different 
integrals of motion by taking the trace of successive powers of the density matrix 

N 
K,,=Tr(pm(t)} =Tr(p'"(O)) = XF. 

i- I 

By this procedure independent invariants are obtained in the most general case for 
m d N only. This is immediately clear from the Cayley-Hamilton theorem [28] which 
states that any matrix p with characteristic polynomial PN(A)=O fulfills ( p o s t N )  I 

P ~ ( p ) = b ~ -  I lpN- '  +. . .+(-I)  N-ll,+- lp+ ( - 1 ) N I N l ~ = 8 N .  (3.21 

Again, as long as unitary dynamics is considered, the time is arbitrary. Then, from 
Tr(pPN(p)) =O one obtains 

KN+ I = I1 KN- I ~ K N -  I +; . . + (-1) "INK,  (3.3) 

and KN+] appears, indeed, as being 'linearly' dependent upon all lower-degree invari- 
ants. The same conclusion applies to any higher degree. Strictly speaking, the notion 
of 'linear' dependence is misleading in the sense that the theory i s  nonlinear in N 
variables and, in fact, all K,,s ( m < N )  are again certain polynomials in the basic I- 
invariants. This follows directly from the main theorem on symmetric functions quoted 
in the preceding section since, again, any K,, in (3.1) is a completely symmetric function 
of the roots. In order to obtain relations between the polynomial and trace-invariants 
one may take the trace of (3.2) to find 

Tr{PN(p)) = K N - I I K N - I  f. . . + (-1) N - l I N - l K ]  + ( - l ) N z ~ N = o .  (3.4) 

With the definition Io=l this equation must hold for any N p 2  but, in a somewhat 
heuristic first attempt, one may even set N= 1 to obtain K I  =~11 . Surprisingly, this is 
true for arbitrary N since, according to the earlier definitions, K, =,Il =Tr(p). Next, set 
N = 2  to obtain 

K2= 1: - 2I2. (3.5) 

However, for~arbitrary N we have 

and find, again, that the relation (3 .5 )  is universal despite havingset N = 2 .  This remains 
true for any invariant of higher degree. In this way practical recursion relations are 
derived which can be solved, for instance, for any K,= as a function of the 1,s (1 g l g m ) .  
The first five equations, valid for arbitrary N ,  are as follows, 

K, =Jl K ~ = I :  -21, %=I:- 31J2 f 313 

&=I:- 41~12+4111, +21:-414 (3.6) 

Ks I : -  5I:Iz-b 5IfI3 4- 5I11;- 5414- 51213 + 51, 
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The final general result is that, due to (3.4) and an equation like (3.3) but for N+f= 
s, one has the two relations 

K,- 4 ~ -  I + . . . + (-1 )=-'zS- '6 + (- i)"rJ= o (3.7) 

K,- rl& I + . . . + (-1) - 'rN- I +(-I) "zN~$- N= o s>N. (3.8) 

s < N  

These are known as 'Newton's formulas'. For more details, general proofs and interest- 
ing historical remarks see [26, 27, 29, 301. 

As is evident, particularly from (3.6), any symmetric function containing integer 
coefficients is expressible in terms.of the f ~ s ,  again by integer coefficients [26]. On the 
other hand, the elementary symmetric functions can be represented in terms of non- 
elementary ones but by rational coefficients. An example is provided by the formulas 
inverse to those in (3.6): 

II = Kl I,= i(K? - Kz) 1, =i[K? -~3K1 K2+ 2K3] 

4=8[K4-6K:K2+SK~K,+3K~- 6&] (3.9) 

Is=&[K:- 1OK:Kz + 20KfK3 + 15KlK:- 30K1Ka- 20K2K3 + 24K51, 
For practical applications it seems to be easier to calculate trace-invariants and to use, 
if necessary, the inverse formulas to obtain the Z-invariants. 

4. Coherence-vector invariants 

For many purposes it is advantageous to represent p ( t )  by M=N2-1 real-valued 
functions uk(t) considered to be the components of a so-called coherence-vector 

u(t)=(Ol(f), uZ(t), . . . , uM(t))'ERM. (4.1) 

(4.2) 

The decomposition 
M 1 

N k=l 
p(t)=--N+ udt)Fk 

is then in terms of a complete orthonormalized set of (Nx N) matrices {fi)? with 

FJ=FT Tr(fi) =O (4.3) 

Tr(F&) = &k (4.4) 

odf) =Tr(p(OFd. (4.5) 
In particular, we use a special representation of the infinitesimal generators of S U ( N )  
[14, 151 with 

(4.6) 

zjb=&4h+iLb) (4.7) 

where the d& are the completely symmetric and the& the completely antisymmetric 
real structure constants of the Liealgebra. By considering the former trace-invariants 
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and using (4.2) one sees from 

that any expression of the form 

qk=Tr &,(t)V,(t) . . . V,(f)F.,F,. .I ~~1 F., (4.9)~ ( ,  ",."l..... n k = l  

is a i  invariant,. again. However, an evaluation of the trace by repeatedly using the 
contraction (4.6) decomposes Sk for k>4 into more.elementary invariants denoted by 
Li .  As a consequence, the trace-invariants can now be expressed as 

K I = P I ( L I ,  Lz . .  . . , LII (4.10) 

where P; is a polynomial in all Lis ( i < I )  with the highest L/ occurring in the first power 
with weight 1. An example is worked out in appendix 2. Here, we merely give the 
resulting homogeneous forms in the coherence-vector components with coefficients that 
are products of symmetric~structnre constants only, 

(4.11) 

The explicit polynomials (4.10) for the trace-invariants are as follows ( a =  l/N): 

K I = L I  K Z = a L : + L  

K3= a z L : + 3 a L +  L3 

K4 = a 'L? + 6a2L + a ( L  + 4L3) + L& 

K~ = a 4 ~ : +  i~0a3k+ 5 a 2 ( ~ :  + 2 ~ ~ )  + 

(4.12) 

+ 5 ~ ~ )  + L ~ .  

Note that the explicit dependence upon L1 has been kept to enable a possible use of 
(4.12) also for classical dynamical problems where K ,  =LI need not be equal to 1 .  

5. ~ Extrema1 properties 

Since the spectrnm of any state p,is restricted to the interval [O, I] all invariants will 
be subject to corresponding lower and upper bounds. Note first that for the otherwise 
uninteresting pure states one has I , = l ,  11=0 ( 2 g I g N )  and K;= 1 ( I G I G N ) .  In the 
following we will always presuppose genuine mixed states with Tr(p2) <Tr(p) = 1, Then, 



616 K Lendi 

from (2.9) one h d s  

(5.1) 

and from (3.1) 

O<K,<l 2 d I G N .  (5.2) 

I t  is immediately clear that the upper limit in (5.1) is much too high since it follows 
from (3.6) for Iz, for instance, that O<Iz<$ independent of N. Furthermore, from 
methods described in [15] one can deduce exact bounds, for instance, for L= llo1I2, 

(5.3) ~~ 

1 
N 

O<I&l--. 

In any case, rough estimates may be too unsatisfactory. Fortunately, due to the very 
peculiar properties of the symmetric functions it will be possible to derive exact bounds 
for all polynomial invariants and, consequently, also for all other invariants via the 
reciprocal formulas given earlier. Thus, one has to determine under what conditions 
on the spectrum of p, or else, on the particular distribution of eigenvalues {&}y do 
the &-invariants attain their maximum values. 

Consider the variational functions 

dJl=4+Plp 

where q~ is the trace constraint 

(5.44 

N 
p= c ai-c=r,-c=o (5.46) 

and p l ,  the Lagrange multipliers. Of course, for density matrices, c= 1 ( I ,  = 1) and p= 
I ,  - 1 = O  but we will keep a general value of I ,  in all formulas to enable a possible use 
also in those problems of classical dynamical systems for which one can construct Lax- 
pairs (L, E )  with L>O where the trace need not be equal to 1. A general recursion 
relation is derived from the extremal conditions 

i- I 

together with the homogeneity relations. In fact, (2.9) implies that Ij is a homogeneous 
function of degree 1 in N variables satisfying the Euler condition 

As a first result, (5.5) and (5.6) yield 

(5.7) 
PI 
1 

I,= --I, . 
A determination of is possible by symmetry considerations applied to the Nequations 
(5.5). Note, for instance, that the fixed sequence with I-1 consecutive indices and a 
last arbitrary one like A,&. . . A,-,&, occurs N-I+ 1 times since ml=l, I+ 1,. . . , N .  
Because all possible choices of any I indices out of N occur in the summation for I, the 
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above argument is true for any fixed sequence ;l;,A,, . . . &.,,with non-consecutive indi- 
ces, too. A selected aZI/a& is no longer symmetric in the variables but upon summation 
of all derivatives, a completely symmetric function is restored, in fact .a multipole of 
Zl- I, that is 

(5.8) 

From (5.5) we obtain 

(5 .9)  
N - l f l  

N PI= -~ 11- I 

and from (5.7) the final recursion relation 

TI= (T N - l f  1 ZI )Il- I 
(5.10) 

valid under extrema1 conditions. Within the manifold of genuine mixed states the extre- 
mum must be a maximum since the minimum (122 )  cannot be less than zero and this 
value is attained by the pure states only. Therefore, one arrives at the important conclu- 
sion that all invariants~are simultaneously maximized under spectral conditions still t o  
be derived. For this purpose consider the solution of (5.5) for I,. By subtracting pairwise 
any two equations from each other one finds the unique solution 

a,=&= ...= a, , (5.11) 

and, therefore, all invariants take on their maximum value for the central state 

1 
N 

C=-Q,. (5.12) 

This reminds~one of the property of the von Ne&" entropy [18] 
N 

S[p] = -Tr(p In p )  = - C di In A, (5.13) 
i= I 

also with unique maximum for 5 given by 

S [ n  =In N .  .. (5.14) 

In conclusion, we have derived the exact upper bound for all invariants, realized 
uniquely by the central state and given explicitly by 

N !  
N ( N - l ) ! l ! '  TI= I 

6. Group-theoretical analysis of completely incoherent states 

As is obvious from the symmetric functions, invariants imply certain symmetries with 
associated groups and these set all restrictions on the availability of states by the 
dynamical transformations. A particularly distinguished set of states is given by all 
diagonal density matrices, which we will denote as 'completely incoherent states' with 
respect to a chosen basis. The latter is usually~determined by the eigenstates of an 
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appropriate time-independent unperturbed Hamiltonian. The reason why particular 
attention has been drawn to this selected set of states in applications to problems of 
population transfer in quantum optics and magnetic resonance is mainly due to the 
fact that, on a short time-scale, they are somewhat 'longer-lived' than coherent states 
and are, therefore, possibly more accessible to experimental manipulations. This is 
quickly seen by expanding p ( t )  in (2.2) yielding, for the occupation probabilities, for 
instance, 

pi&) - p j @ )  +it  {pij(o)Hjj-Hi,pl,(o)} + W). (6.1) 

Thus, the first-order contribution vanishes for diagonal initial states and this explains 
what is meant by 'longer-lived' on a short time-scale. In particular, spin ensembles 
exposed to a static field in thermodynamic equilibrium only show magnetization parallel 
to the field and this corresponds to stationary diagonal states [31]. 

Starting from a given diagonal initial state p(0)  with populations 
{,a['), do), . . . , A;)} one can ask the question as to the possible completely incoherent 
states ever achievable by any unitary dynamics and the associated changes in popula- 
tions..The answer is almost trivial on the basis of the theory developed so far. Since it 
follows from the uniqueness theorem for the product decomposition in (2.8) that there 
is a one-to-one correspondence between all eigenvalues {Go)}? and all invariants 
{ I , } r  no final population sequence {ATT)}? at any later time Tis  ever possible except 
for those obtained from some reordering of the given values. In other words, the 
only freedom left for population transfer is given by the set of all permutations. The 
corresponding symmetry group in the case of a completely distinct spectrum is, conse- 
quently, the symmetric group SN of order N ! .  In the case of degeneracies the possibilities 
are reduced accordingly. It must be stressed that this result is independent of any details 
of the Hamiltonian or, in physical terms, of special pulse forms, strengths, durations 
or frequencies of applied pumping fields. It is a pure consequence of unitary dynamics 
valid as long as irreversible processes do not yet come into play. 

In the following we will derive some important connections between the group 
SN, some of its irreducible representations and the coherence-vector representation of 
diagonal density matrices. It is convenient to decompose p into a sum of its dynamically 
invariant plus its traceless part, as in (4.2) 

p = c + a  (6.2) 
but only diagonal matrices LT with Tr(o)=O are considered and we write 

N 

I- I 

with the restriction 
I 1 

- -gp j<  1 -- 1 d i g N .  
N N 

Since Tr(o) = O  one may choose pN,'for instance, as redundant and introduce a vector 
in terms of the N- 1 independent quantities 

(6.5) 
T 

P = (PI 7 P z  I . . . , P.N- I) . 
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In the decomposition (4.2) only the subset of diagonal generators of SU(N) is needed. 
They form the Abelian Cartan subalgehra [32] of dimension N -  1 and will be denoted 
by ( Q k } r - ' .  According to the general construction their explicit form is given by [14] 

where the numbering has been chosen with respect to the increasing last non-zero 
diagonal element. The corresponding coherencevector will be denoted by 

(6.7) T W'(w1, w 2 , .  . . I W N - 1 )  

such that we have a decomposition 

Note that for given w equation (6.8) yields N equations to determine ,U, one of them 
being redundant. Thus, there is a one-to-one correspondence between w and p and one 
can write in terms of a non-singular ( N -  1 )  x ( N -  1 )  matrix A 

p=Aw (6.9) 

with matrix elements 

{ ( iV -k ) (N-k+ l)]-'" 1 <i<N- 1 l $ k < N - i  

A ; ~ =  -(i- I ) [ ( N - i ) ( N - i +  I ) ] - ' ~  2GiGN-1 k = N - i f  1 (6.10) 

otherwise. 

Detailed inspection of (6.8) shows that for given p. on the other hand, w can be obtained 
 by successive backward recursion. Due to the particular structure of the generators also 
the inverse A-' is found in analytical form with matrix elements 

i= 1 1 <k<N- 1 

[ ( ~ - i ) ( ~ - i + ~ i ) ] - ' P  2GiGN-1  l < k $ N - i  

-(N-i)[(N- i ) (N-  i ) (N-  i+ I)]-''' 2<i<N-1 k=N- i+l  

otherwise. 
(6.11) 
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Consider now an entirely distinct-spectnim of U or, equivalently, of p .  Then, any 
permutation of roots within the sequence 

{!JI,P*, . . . .PN) (6.12) 

will generate a new coherence-vector giving rise to identical invariants. For the reduced 
p-vector the above operation is effected by a permutation, too, but if the latter involves 
the redundant p N  one just has to replace the partner in the corresponding transposition 
by 

N-1 

- c pi. 
i- I 

To analyse the details a few notions and theorems from the theory of the symmetric 
group SN [33,34] will be needed. Any permutation 7r from SN is uniquely determined 
by a product of disjoint cyclic factors and any cycle can be written as a product of 
transpositions (ik). Furthermore, any transposition can be decomposed into factors of 
neighbouring transpositions ( I , ! +  1) and, consequently, the group is entirely determined 
by the minimal generating set 

G~-1={(12) , (23) , . .  . , (N-l .N)} (6.13) 

consisting of all transpositions of successive numbers. Therefore, the following consid- 
erations are restricted to the N- 1 elements of GN-, and any general permutation can 
be obtained by appropriate multiplication rules. For a given initial condition p(0) we 
denote the sequence by p"' and the corresponding coherence-vector by w(O) where 

w(o,=A-'p"', (6.14) 

Then, for any  RES^ 

&) = p p  (6.15) 

and in this way N !  different vectors are generated. The transformation w " ) 4  w(*' can 
also be written as 

w'"' = D( 7r) W'O'. (6.16) 

Note that a representation of all elements of SN necessarily involves all N -  1 vector 
components and we conclude that D must constitute an (N- 1)dimensional irreducible 
representation. This is another way of proving that a representation of this dimension 
must exist for arbitrary N, whereas common proofs follow directly from the partitions 
and corresponding Young tableaux. In fact, according to the general theory there is 
always an irreducible representation characterized by 

(6.17) 

whose dimension is determined by the number of ways to place the numbers 2,3, . . . , N 
into the single box in the second row of the graph. For completeness note that for 
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N 2 4  there exists also the inverted tableau 

~. 
(6.18) 

belonging to a second irreducible representation of the same dimension N- 1 but not 
equivalent to the first one. This case is compatible with a corresponding inverted 
enumeration of the generators {a}:-’ obtained by replacing k by N-k. We do not 
analyse the further exceptional case for N=6 with two additional representations of 
dimension 5 characterized by the partitions [3,3] and [2,2,2] since, according to our 
choice of generators, only the case displayed in (6.17) will be needed. 

An important practical result of this analysis is that the representation matrices can 
 now easily be constructed in the desired explicit form. To do this introduce simple 
permutation matrices P(I, I +  1) for all neighbouring transpositions such that 

p“.””=P(i, I+ 1 ) p .  (6.19) 

The matrix elements for l<N-2 are explicitly given by 

p&(i, I +  1 ) = 6 j k  i+i, I +  1 k#I, I+ I 

Pr,(l,l+l)=Pr+i,r+i(l, I+1)=0 (6.20) 

Pr,r+i(I, i+ l)=Pr+j,r(I,j+ I ) =  I 
Sincefor f = N -  1 the result of exchanging 
the independetlt pi-values the last matrix missing in (6.20) has the special form 

with pN must be written in terms of 

1<i ,kSN-2 
L l  i=N-1 l<k<N-1.  

(6.21) 6 ik  Pfk(N-l,N)= 

Finally, in terms of the analytically constructed matrices A ,  A-’ and P(I, I +  1 )  one finds 
the (N- I)-dimensional irreducible representation matrices D(I, I+ 1) of SN from (6.19) 
and (6.14), (6.15) by multiplication 

D(I, I +  I)=A-’P(I ,  I +  1)A 1 S l < N -  1. ( 6 . 2 3  
It is interesting to note that the particular choice of the diagonaLgenerators { Q k }  

determines the structure of the A-matrices in such a way that all representation matrices 
appear in exactly the same orthogonal form as given by Hamermesh [33]. As an illustra- 
tion the example for N=4 is worked out in detail in appendiw 3. Note also that degenera- 
cies in the spectrum ofthe initial stateare automatically accounted for by this procedure. 
In such a situation the components of do) wiU be restricted to a particular form such 
that some of the transformations lead to the same final coherence-vectors. In particular, 
the transpositions of equal roots must leave do) invariant, of course. 

~ ~ In fact, the generated set of vectors.shows a rich geometrical structure in that all 
patterns can be viewed as hyperpolyhedra inscribed into~spheres of radius lld0)ll. The 
symmetry is higher or lower depending on.~details of the spectrum. For instance, for 
the simple special case of a three-level system with {A, =$, b = O ,  A,=$} one obtains a 
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regular hexagon in the (w,, wZ)-plane whereas for {Al=Az=i,A3=0) one obtains an 
equilateral triangle, etc. The situation reminds one very much of the patterns 
encountered in the classification of simple and semisimple Lie-algebras in terms of root- 
and weight diagrams [32,35,36]. In addition, important contributions by Stiefel [37] 
should be mentioned regarding the connection between discontinuous transformation 
groups of Euclidean spaces and compact Lie groups [38] and the crystallographic 
determination of their characters [393. However, a closer look into the details shows 
that the analogies are less direct than onemight expect and going further in  this direction 
is definitely beyond the scope of this paper. 

I 

7. Importance for numerical calculations 

In most cases the solutions to (2.1) must be computed numerically. From the decomposi- 
tion (4.2) a set of M= NZ- I coupled ordinary linear first-order differential equations 
is generated in the form [14] 

(7.1) 

where Q(t )  is a skew-symmetric ( M x M )  matrix, its elements being real-valued 
functions of time, in general. Even the most sophisticated numerical methods can impose 
only local error control criteria [40] on the integration procedure. This provides reliable 
estimates on relatively short time-intervals whereas global control on larger intervals is 
only possible if (7.1) implies certain time-conserved quantities for the solutions. This 
puts in clear evidence bow important it is to have a complete set of dynamical invariants 
available for this purpose, the latter being known very accurately almost to machine 
precision 6," from the chosen initial state p(0) or, equivalently, from o(0). As an instruc- 
tive example showing already typical trends it will be sufficient to consider a modest 
case in four dimensions but with a rather strongly timedependent Hamiltonian. After 
choosing an initial state o(0) the IS coupled equations (7.1) are solved by, a procedure 
due to Hindmarsh [40]. The standard program 'Isode' has been modified in order to 
allow for an optional vaIue of the local relative error E over a wide range of orders of 
magnitude. The meaning of E is roughly as follows. If any coherence-vector component 
has been determined up to accuracy E a further decrease of the integration step lengths 
will change this result by a relative amount less than E at any point of the integration 
mesh within the chosen entire interval. Even for an optimal choice of E compatible 
with 6,. the errors tend to accumulate more and more in long-time runs. This means 
that the numerically computed trace-invariants, for instance, deviate from their refer- 
ence values Kj at t = O .  For a calculation over an interval 

T= [0, 51 (7.2) 

we write Ki(t) and denote by K: the value with the largest deviation in T, that is 

K[=max &(t). 
I S 7  

(7.3) 

As control parameter we therefore choose 

A&=IKjKi- K:l. (7.4) 
The ordinary trace (i= 1) need not be considered since it is always accurate almost to 
precision 6,. 
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time [sec] 
Fipre 1. Time-evolution of ihe occupation probabilities of a four-level system’ with strongly 
time-dependent Hamiltonian. The details will be found in appendix 4. 

The relevant details of the model are briefly summarized in appendix 4. All param- 
eters have been adjusted in such a way that lhe characteristic strong time-variations 
can be displayed in the interval 2 = 2 s as shown in figure I for the level populations. 
All computations have been performed in double precision with 6,.< Table 1 
then summarizes the resulting data for different choices of E and shows, in particular, 
the consequences for the values of A&: Increasing z by a factor 5 causes a further loss 
of accuracy, as indicated in table 2. 

8. Conclusions 

The effects presented in the last section cannot be said to be dramatic and are certainly 
much less pronounced than one is used to, for instance, in problems of nonlinear 

Table 1. Largest numerical deviations of the three relevant trace-invariants on the intenial 
[0,2] for the model displayed in figure I (see also appendix 4) as a function of a local 
control parameter E explained in the text. The numbers for the A&-values are rounded to  
one figure with the exponent~to the basis IO in round brackets. . 

1(-13) 3(-13) 4(-13) 6(-13) 
1 (-11) 5 (-11) 8 (-11) I (-10) 
I(-9) 3 (-9) 4 (-9) 5 (-9) 
((-7) 2(-7) . 4(-7) 5 (-71 

2 ( - 6 )  2 (-6) 3 ( -6)  
1(-5) 4 ( - 5 )  6 ( -5)  8 ( -5)  
IS-4) 1(-3) 2(-3) 3 (-3) 
If-3) 3 f-3) .4(-3) 6 f-3) 
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Table 2. Largest deviations of invariants (as in table 1) for two selected &-values but on 
the interval [0, IO]. 

~ ~~ ~ 

I(-13) 2(-12) Z(-12) 3(-12) 
I(-4) 8 (-3) 1(-2) 2 I-2) 

classical dynamical systems. Nevertheless, the trends do exist and control by invariants 
will acquire its real significance for very large dimensions and, ultimately, in the notori- 
ously tricky problems of irreversible processes. The latter appear in the dynamics of 
open systems considered as small subsystems of very large closed systems which undergo 
unitary dynamics. In contrast to (2.1) the density matrix p.(?) describing the open 
subsystem obeys a complicated integro-differential equation. It is only under many 
restrictive assumptions that the latter can be cast in a mathematically satisfactory and 
tractable form €12, 151. Although the resulting so-called ‘Markovian’ master equations 
cover a wide field of applications there are left too many relevant problems which 
cannot be treated in this simplified way. Despite many respectable attempts towards a 
generalization to the ‘non-Markovian’ case, one must admit that it has been impossible 
to develop the theory on a level which even approaches todays standards of mathemati- 
cal physics. Therefore, it is obvious and challenging to take advantage of the numerical 
solutions of (2.1) for the entire large systems including the control by invariants, and 
to project out to some physically relevant subspace afterwards in order to obtain pS(t). 
Note that for p.(t) no invariant may exist at all due to the unitarity-violating irreversible 
behaviour. This is already the case for uniquely relaxing semigroups [15]. Some interest- 
ing molecular problems with N of the order of IO4 have already been treated in the 
above spirit 141431 and one may hope that more progress will be made along this 
direction. Finally, some results similar to those presented in section 6 for completely 
incoherent states have been used in recent investigations on the possibilities of magnetiz- 
ation transfer in NMR [44,45]. 

Appendix 1. N , ,  for a degenerate spectrum 

Consider first the trivial case for N=2: 

I ,  =a, +nz ~ ~ = a , a ~  

I ,  = 2x 12=x’=2:. 

I ,  = a, +a2+ a, 
r2 = LA + ala, + a2a, 

by setting L,=L2=x. Then 

In the next example for N= 3: 

I, = n,a,a, 
we set, for instance, A,=&=x and & = y  to obtain 

(Al.l) 

(A1.2) 

(A1.3) 

(A1.4) 

Obviously, neither I, nor I3 can be represented as any polynomial in the lower invariants 
and remain, therefore, independent. The-only reducible situation occurs for AI =A2= 

2 I , = 2 x + y  12 = x2+2xy I3=x y .  
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A,. Note also that, in the reduced variables x and y ,  the invariants (A1.4) are no longer 
symmetric functions, which turns out to be of crucial importance. Next we proceed to 
N = 4  where 

zl =al +a2 + a, +L . 
z2= a lh  + a,a, + a l i  + &a3 + &a4 +a,& 
13 =a,&a,+ ala2a4+a,a3~4+ &n,a., 
I.,= a, a&. 

The only reducible case is for 

aI=n,=x a3=L=y 

z, = 2(x+ y )  
I ,  = 2(2y + xy2) = (x +y)(2xy) 

I, =2 +4xyt yz= (x +y)2 + 2xy 

I4 = (xy)'. 

I ,  and Z2 are independent but 

z, = ;I, I ,  - iz; 
14=&f:-kZ:12 + :I;. 

(AIS) 

(A1.6) 

(A1.7) 

(A1.8) 

From these elementary considerations one can draw the following general conclusions. 
If there are m < r  (r=rank(p)) distinct roots with exactly the same multiplicity g there 
are also exactlym independent invariants (NmU=m) and the remaining r -m invariants 
can be expressed as suitable polynomials in the first ni invariants. Obviously, N,, is a 
divisor of r ( r < N ) .  

Appendix 2. Evaluation of L5 

By repeated multiplication of (4.2) one obtains 

(A2.1) 

As an example we evaluate the last term of (A2.1) which will be denoted by Gs. 
According to (4.9) we have 

5 +- 2 ViV*V&FtFkF~Fm + V ; V k V P d @ z F k F j E f l n .  
N ?,k.l.m ik,,l,n.n 

ZS =Tr(Gs). (A2.2) 

By use of (4.6) and (4.7) for the pairs (i, k), (L, m) and, afterwards, for ( 4 . p )  we find 

(A2.3) Gs = A +B+ C 

(A2.4) 
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c= ~ i v ~ v j u , ~ u ~ z , ~ ~ , " p { ~ ~ ~ ~ ~ + ~  1 zqp+ 

i,k.i,m.n 
'I.P 

From (4.3) one obtains 

Tr(A)=O 

and, after using (4.4) and renaming summation indices, 

The sum is real since, according to (4.7) 

z;& = Zfijn 

and, consequently, in terms of the definitions in (4.11) 

2 
N 

Tr(B) =- hL,. 

As a first result for Cone obtains 

~ 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

Due to the above arguments all contributions involving products of one d and twof- 
constants or three f-constants vanish. Furthermore, because of summation over all 
indices every term of the form 

u i ~ k u i v m ~ d i k ~ i m p & p n  (A2.12) 

has a counterpart obtained by simultaneously interchanging q with p and the pair (i, k) 
with (/, m), resulting just in a change of sign and therefore cancelling each other. What 
remains is 

Tr(C)=L5 (A2.13) 

and, finally, 

2 Tr(G5) =- L,& + L5. 
N 

(A2.14) 

All summands in (A2.1) containing products of fewer coherence-vector components are 
calculated similarly. In this way all relations in (4.12) can be obtained straightforwardly. 
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Appendix 3. Explicit matrices for N =  4 

SU(4) is of rank 3 with corresponding diagonal generators given according to 
(6.6) by 

with an associated structure matrix 

and its inverse 

(A3.2) 

(A3.3) 

 the^ reduced permutation matrices for the generating transpositions (see (6.19) and 
(6.20)) are then 

P ( 1 2 ) = [  i P ( 2 3 ) = [  : P ( M ) = (  0 1 3. (A3.4) 

- 1  -1 -1 

From (6.22) the irreducible representation matrices are found in the form 

(A3.5) 
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To generate any further matrix as, for instance, the one for the cycle (124) one uses 
the cycle decomposition [34] 

(ili2. . . i,)=(i&)(i&) . . . (ir-,ir) l S r ,  i,<N (A3.6) 

together with repeated application of the shift rule 

(j, k+l)=(k ,  k+l)(j%)(k,k+ 1) I Q ’ < k < N  (A3.7) 

in order to obtain (124)=(12)(34)(23)(34) in terms of the generating elements and, 
accordingly, 

In an analogous way all 24 representation matrices of S, are readily derived. 

Appendix 4. Details of the numerical test case for N =  4 

Initial state (rounded): 

55 -113-102i 100+27i 11+133i 

425 -256+ 131i -271-254i p(o)  = 1 0 - ~  
195 85+237i 

[h.c. 325 

(A4.1) 

For the Hamiltorim the time-independent choice is (units in s-’ omitted throughout) 

6 5-2i 4+2i 3 + i \  I 4 3-3i 2+i  

-3 l+2i  

\h.c. -7 I 
with eigenvalues (rounded) 

E,=-8.87 El=-6.13 E, = 2.24 E4 = 12.16. 

The full timedependent Hamiltonian is obtained by replacing 

H i k - t  H d t )  = H i k j k ( t )  1 < i < k S 4  

(A4.2) 

(A4.3) 
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with the following real time-functions: 

f i 2 W  =cos a 
j L ( t ) = s ~ h ( ~ . t - s )  f i 3 ( f )  =e-md'cos c u , ~  (A4.4) 

&(t)= (1 + w r t y  

0. = 4.354 o b = 7  

w,=10 s=5 wd=3 

0.=60 of= 5 w,=3. 

fi3(f) =sin obi 

fi4(f) =2 tanh(w,f) 

(A4.5) 
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